High speed steel

E M35

CHEMICAL COMPOSITION

C	Cr	Mo	W	Co	V
0.93	4.2	5.0	6.4	4.8	1.8

STANDARDS

USA: AISI M35Europe: HS 6-5-2-5Germany: W.Nr. 1.3243

• (France: (AFNOR Z90WDKCV6.5.5.4.2))

Sweden: SS 2723(UK: BM35)

• Japan: (JIS SKH55)

DELIVERY HARDNESS

Soft annealed max. 270 HB Cold drawn max. 320 HB Cold rolled max. 320 HB

DESCRIPTION

E M35 contains cobalt for increased hot hardness. The composition of E M35 offers a good combination of toughness and hardness. E M35 has a good machinability.

APPLICATIONS

• Reamers

• Hobs

Milling cutters

Broaches

End mills

• Saws

Cutters

• Cold work

FORM SUPPLIED

Wire rod

Square bars

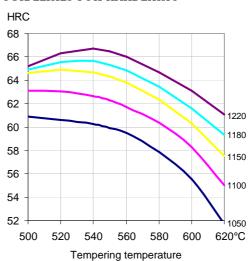
• Drawn wire

Strips

• Round bars

• Strips
• Sheets

Flat bars


• Discs

Available surface conditions: drawn, ground, rolled, hot rolled, cold rolled, peeled, turned.

HEAT TREATMENT

- Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling 10°C per hour down to 700°C, then air cooling.
- Stress-relieving at 600°C to 700°C for approximately 2 hours, slow cooling down to 500°C.
- Hardening in a protective atmosphere with pre-heating in 2 steps at 450-500°C and 850-900°C and austenitising at a temperature suitable for chosen working hardness.
- 2 tempers at 560°C are recommended with at least 1 hour holding time each time.

GUIDELINES FOR HARDENING

Hardness after hardening, quenching and tempering 2 x 1 hour

Tool	Hardening	Tempering
Single-edge cutting tools	1220°C	560°C
Multi-edge cutting tools	1180-1220°C	550-570°C
Cold work tools	1050-1150°C	550-570°C

PROCESSING

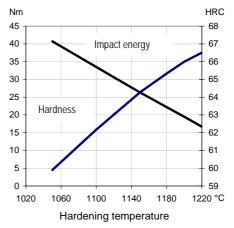
E M35 can be worked as follows:

- machining (grinding, turning, milling)
- polishing
- plastic forming
- electrical discharge machining
- welding (special procedure including preheating and filler materials of base material composition).

GRINDING

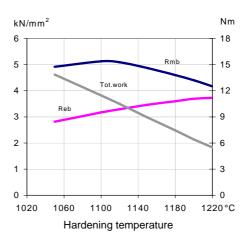
During grinding, local heating of the surface, which can alter the temper, must be avoided. Grinding wheel manufacturers can furnish advice on the choice of grinding wheels.

SURFACE TREATMENT


The steel grade is a good substrate material for PVD and CVD coating. If nitriding is requested a small zone of 2-15 μm is recommended. The steel grade can also be steam-tempered if so desired.

PROPERTIES

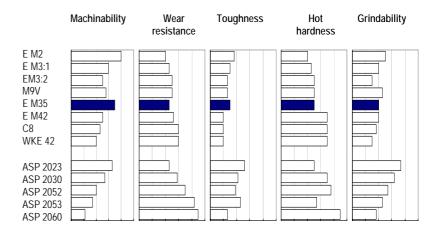
PHYSICAL PROPERTIES


	Temperature				
	20°C	400°C	600°C		
Density					
g/cm ³	8.1	8.0	8.0		
Modulus					
of elasticity					
kN/mm²	230	205	184		
Thermal					
expansion					
ratio per °C	-	11.6x10 ⁻⁶	11.9x10 ⁻⁶		
Thermal					
conductivity					
W/m°C	24	28	27		
Specific heat					
J/kg °C	420	510	600		

IMPACT STRENGTH

Tempering 2 x 1 hour at 560°C
Unnotched test piece 7 x 10 x 55 mm

4-POINT BEND STRENGTH


Tempering 2 x 1 hour at 560°C Dimension of test piece \varnothing 4.7 mm

Rmb = Ultimate bend strengthin kN/mm^2

Reb = Bend yield strength in kN/mm^2

Tot. work = Total work in Nm

COMPARATIVE PROPERTIES

