High speed steel

E M2

CHEMICAL COMPOSITION

C	Cr	Mo	W	G	V
0.90*	4.2	5.0	6.4	i	1.8

* 0.85 for strips

STANDARDS

USA: AISI M2Europe: HS 6-5-2Gormany: W Nr. 1

• Germany: W.Nr. 1.3343

• France: (AFNOR Z85WDCV6.5.4.2)

Sweden: SS 2722UK: BM2

• Japan: JIS SKH51

DELIVERY HARDNESS

Soft annealed max. 260 HB Cold drawn max. 310 HB Cold rolled max. 310 HB

DESCRIPTION

E M2 is a medium-alloyed high speed steel which has a good machinability and a good performance and is used in a wide variety of applications.

APPLICATIONS

• Twist drills

Broaches

• Reamers

Knives

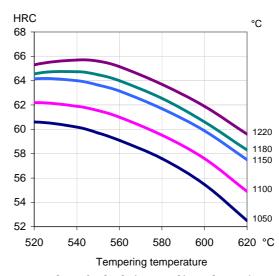
• Milling cutters

• Saws

Taps & dies

• Cold work tools

FORM SUPPLIED


- Drawn wire
- Strips
- Wire rod
- Laserstrip
- Round bars
- Sheets
- Flat bars
- Discs
- Square bars
- Bi-metal edges

Available surface conditions: drawn, ground, hot rolled, cold rolled, peeled, turned.

HEAT TREATMENT

- Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling 10°C per hour down to 700°C, then air cooling.
- Stress-relieving at 600°C to 700°C for approximately 2 hours, slow cooling down to 500°C.
- Hardening in a protective atmosphere with pre-heating in 2 steps at 450-500°C and 850-900°C and austenitising at a temperature suitable for chosen working hardness.
- 2 tempers at 560°C are recommended with at least 1 hour holding time each time.

GUIDELINES FOR HARDENING

Hardness after hardening, quenching and tempering 2 x 1 hour

Tool	Hardening	Tempering
Single-edge cutting tools	1220°C	560°C
Multi-edge cutting tools	1180-1220°C	560°C
Cold work tools	1050-1150°C	560°C

PROCESSING

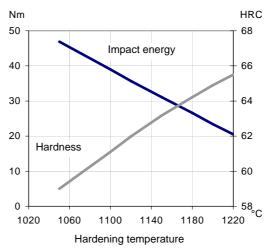
E M2 can be worked as follows:

- machining (grinding, turning, milling)
- polishing
- plastic forming
- · electrical discharge machining
- welding (special procedure including preheating and filler materials of base material composition).

GRINDING

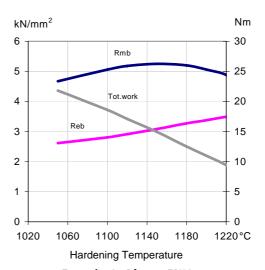
During grinding, local heating of the surface, which can alter the temper, must be avoided. Grinding wheel manufacturers can furnish advice on the choice of grinding wheels.

SURFACE TREATMENT


The steel grade is a good substrate material for PVD and CVD coating. If nitriding is requested a small zone of 2-15 μ m is recommended. The steel grade can also be steam-tempered if so desired.

PROPERTIES

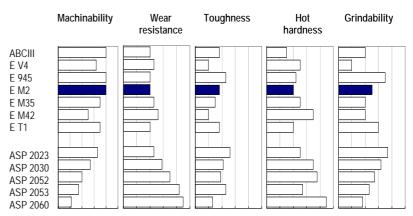
PHYSICAL PROPERTIES


	Temperature				
	20°C	400°C	600°C		
Density g/cm ³	8.1	8.1	8.0		
Modulus of elasticity kN/mm ²	225	200	180		
Thermal expansion ratio per °C	-	12.1x10 ⁻⁶	12.6x10 ⁻⁶		
Thermal conductivity W/m°C	24	28	27		
Specific heat J/kg °C	420	510	600		

IMPACT STRENGTH

Tempering 2 x 1 hour at 560° C Unnotched test piece 7 x 10 x 55 mm

4-POINT BEND STRENGTH


Tempering 2 x 1 hour at 560°C Dimensions of test piece \varnothing 4.7 mm

 $Rmb = Ultimate\ bend\ strength$ in kN/mm^2

Reb = Bend yield strength in kN/mm²

Tot. work = Total work in Nm

COMPARATIVE PROPERTIES

